1. Lin, Y.X., S. Suchalkin, G. Kipshidze, T. Hosoda, B. Laikhtman, D. Westerfeld, L. Shterengas, and G. Belenky, Effect of hole transport on performance of infrared type-II superlattice light emitting diodes. Journal of Applied Physics, 2015. 117(16).
  2. Jung, S., S. Suchalkin, G. Kipshidze, D. Westerfeld, and G.L. Belenky, Light-Emitting Diodes Operating at 2 μm With 10 mW Optical Power. IEEE Photonics Technology Letters, 2013. 25(23): p. 2278-2280.
  3. Liang, R., J.F. Chen, G. Kipshidze, D. Westerfeld, L. Shterengas, and G. Belenky, High-Power 2.2 μm Diode Lasers With Heavily Strained Active Region. IEEE Photonics Technology Letters, 2011. 23(10): p. 603-605.
  4. Jung, S., S. Suchalkin, D. Westerfeld, G. Kipshidze, E. Golden, D. Snyder, and G. Belenky, High dimensional addressable LED arrays based on type I GaInAsSb quantum wells with quinternary AlGaInAsSb barriers. Semiconductor Science and Technology, 2011. 26(8).
  5. Jung, S., S. Suchalkin, G. Kipshidze, D. Westerfeld, E. Golden, D. Snyder, and G. Belenky, Dual wavelength GaSb based type I quantum well mid-infrared light emitting diodes. Applied Physics Letters, 2010. 96(19).
  6. Okishev, A.V., D. Westerfeld, L. Shterengas, and G. Belenky, A stable mid-IR, GaSb-based diode laser source for the cryogenic target layering at the Omega Laser Facility. Optics Express, 2009. 17(18): p. 15760-15765.
  7. Jung, S.Y., S. Suchalkin, G. Kipshidze, D. Westerfeld, D. Snyder, M. Johnson, and G. Belenky, GaSb-Based Type I Quantum-Well Light-Emitting Diode Addressable Array Operated at Wavelengths Up to 3.66 μm. IEEE Photonics Technology Letters, 2009. 21(15): p. 1087-1089.
  8. Suchalkin, S., D. Westerfeld, G. Belenky, J.D. Bruno, J. Pham, F. Towner, and R.L. Tober, Measurement of semiconductor laser gain by the segmented contact method under strong current spreading conditions. IEEE Journal of Quantum Electronics, 2008. 44(5-6): p. 561-566.
  9. Suchalkin, S., S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions. Applied Physics Letters, 2008. 93(8).
  10. Laikhtman, B., A. Gourevitch, D. Westerfeld, D. Donetsky, and G. Belenky, Thermal resistance and optimal fill factor of a high power diode laser bar. Semiconductor Science and Technology, 2005. 20(10): p. 1087-1095.
  11. Gourevitch, A., B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C.W. Trussell, Z. Shellenbarger, H. An, and R.U. Martinelli, Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors. Journal of Applied Physics, 2005. 97(8).
  12. Shterengas, L., G.L. Belenky, A. Gourevitch, D. Donetsky, J.G. Kim, R.U. Martinelli, and D. Westerfeld, High-power 2.3 μm GaSb-based linear laser array. IEEE Photonics Technology Letters, 2004. 16(10): p. 2218-2220.
  13. Laikhtman, B., A. Gourevitch, D. Donetsky, D. Westerfeld, and G. Belenky, Current spread and overheating of high power laser bars. Journal of Applied Physics, 2004. 95(8): p. 3880-3889.
  14. Gourevitch, A., G. Belenky, D. Donetsky, B. Laikhtman, D. Westerfeld, C.W. Trussell, H. An, Z. Shellenbarger, and R. Martinelli, 1.47-1.49-μm InGaAsP/InP diode laser arrays. Applied Physics Letters, 2003. 83(4): p. 617-619.