- Lin, Y.X., S. Suchalkin, G. Kipshidze, T. Hosoda, B. Laikhtman, D. Westerfeld, L. Shterengas, and G. Belenky, Effect of hole transport on performance of infrared type-II superlattice light emitting diodes. Journal of Applied Physics, 2015. 117(16).
- Jung, S., S. Suchalkin, G. Kipshidze, D. Westerfeld, and G.L. Belenky, Light-Emitting Diodes Operating at 2 μm With 10 mW Optical Power. IEEE Photonics Technology Letters, 2013. 25(23): p. 2278-2280.
- Liang, R., J.F. Chen, G. Kipshidze, D. Westerfeld, L. Shterengas, and G. Belenky, High-Power 2.2 μm Diode Lasers With Heavily Strained Active Region. IEEE Photonics Technology Letters, 2011. 23(10): p. 603-605.
- Jung, S., S. Suchalkin, D. Westerfeld, G. Kipshidze, E. Golden, D. Snyder, and G. Belenky, High dimensional addressable LED arrays based on type I GaInAsSb quantum wells with quinternary AlGaInAsSb barriers. Semiconductor Science and Technology, 2011. 26(8).
- Jung, S., S. Suchalkin, G. Kipshidze, D. Westerfeld, E. Golden, D. Snyder, and G. Belenky, Dual wavelength GaSb based type I quantum well mid-infrared light emitting diodes. Applied Physics Letters, 2010. 96(19).
- Okishev, A.V., D. Westerfeld, L. Shterengas, and G. Belenky, A stable mid-IR, GaSb-based diode laser source for the cryogenic target layering at the Omega Laser Facility. Optics Express, 2009. 17(18): p. 15760-15765.
- Jung, S.Y., S. Suchalkin, G. Kipshidze, D. Westerfeld, D. Snyder, M. Johnson, and G. Belenky, GaSb-Based Type I Quantum-Well Light-Emitting Diode Addressable Array Operated at Wavelengths Up to 3.66 μm. IEEE Photonics Technology Letters, 2009. 21(15): p. 1087-1089.
- Suchalkin, S., D. Westerfeld, G. Belenky, J.D. Bruno, J. Pham, F. Towner, and R.L. Tober, Measurement of semiconductor laser gain by the segmented contact method under strong current spreading conditions. IEEE Journal of Quantum Electronics, 2008. 44(5-6): p. 561-566.
- Suchalkin, S., S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions. Applied Physics Letters, 2008. 93(8).
- Laikhtman, B., A. Gourevitch, D. Westerfeld, D. Donetsky, and G. Belenky, Thermal resistance and optimal fill factor of a high power diode laser bar. Semiconductor Science and Technology, 2005. 20(10): p. 1087-1095.
- Gourevitch, A., B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C.W. Trussell, Z. Shellenbarger, H. An, and R.U. Martinelli, Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors. Journal of Applied Physics, 2005. 97(8).
- Shterengas, L., G.L. Belenky, A. Gourevitch, D. Donetsky, J.G. Kim, R.U. Martinelli, and D. Westerfeld, High-power 2.3 μm GaSb-based linear laser array. IEEE Photonics Technology Letters, 2004. 16(10): p. 2218-2220.
- Laikhtman, B., A. Gourevitch, D. Donetsky, D. Westerfeld, and G. Belenky, Current spread and overheating of high power laser bars. Journal of Applied Physics, 2004. 95(8): p. 3880-3889.
- Gourevitch, A., G. Belenky, D. Donetsky, B. Laikhtman, D. Westerfeld, C.W. Trussell, H. An, Z. Shellenbarger, and R. Martinelli, 1.47-1.49-μm InGaAsP/InP diode laser arrays. Applied Physics Letters, 2003. 83(4): p. 617-619.